Cari Blog Ini

Blogroll

PLTN Vs. Rokok

Majelis Ulama Indonesia baru-baru ini mengeluarkan fatwa penting mengenai haramnya merokok. Fatwa ini menimbulkan kontroversi banyak pihak, satu sisi mendukung tentang haramnya rokok dari sisi medis, sedangkan yang di seberang menolak karena memandangnya bahwa fatwa tersebut belum urgent dan bisa mengancam industri rokok yag ada di daerah dan tentu berpotensi menambah pengangguran terbuka yang ada di Indonesia.

Lain hal, LBM NU Jateng dan PCNU Jepara pada 1 September 2007. Mubahatsah atau pembahasan yang diikuti sekitar 100 kiai dari wilayah Jateng memutuskan bahwa PLTN Muria hukumnya haram, mengingat dampak negatifnya lebih besar daripada dampak positifnya.

Lalu apa hubungan antara rokok dengan PLTN diatas? Keduanya difatwakan haram oleh ulama, meskipun masih mengundang kontroversi. Terlepas dari fatwa para ulama tersebut, sekarang kita akan membandingkan tingkat bahaya antara rokok dengan PLTN dilihat dari radioaktifitasnya.

Jika kita merujuk data dari US Departmen of Health, Division of Radiation Protection yang dikeluarkan tahun 2002, sinar kosmis menghasilkan dosis 26 mrem/tahun. Radioisotop di permukaan bumi mengandung 29 mrem/tahun. Gas Radon di Atmosfer mengambil kontribusi sebesar 200mrem/tahun. Dalam tubuh manusia pun memancarkan radiasi (dari Karbon - 14 dan Kalium - 40 ) sebesar 40 mrem/tahun. Sinar X untuk diagnosa kesehatan memberikan andil 39 mrem/tahun. Sedangkan aktivitas kedokteran nuklir lainnya memberikan 14mrem/tahun. Instrumen elektronik seperti TV, komputer memberikan 11 mrem/tahun. Dan sisa ledakan nuklir (fall out), reaktor nuklir, pesawat terbang memberikan 1 mrem/tahun. Sehingga total dosis yang diterima tiap manusia di AS secara rata-rata adalah 361 person mrem/tahun atau 0,3 person rem/tahun (1 rem = 1.000 mrem). Hal ini dipenuhi dengan syarat yang bersangkutan tidak merokok.

Sebagai catatan, PLTN dengan daya 1.000 MWatt menghasilkan dosis radiasi mencapai 4,8 person rem/tahun. Namun pemerintah AS membatasi agar pekerja PLTN dan sektor nuklir lainnya hanya menerima dosis maksimum sebesar 100 person mrem/tahun saja. Sementara dalam PLTU dengan daya 1.000 MWatt dengan tingkat radiasi 100 kali lebih besar (yakni 490 person rem/tahun), belum ditemui ada kebijakan yang sama.

Sedangkan untuk rokok ternyata diketahui mengandung Radioisotop Polonium-210. Ini akan menambahkan dosis ekivalen sebesar 29,1 person rem/tahun untuk manusia perokok. Dan akan didapatkan dalam jaringan epitel paru-parunya dosis sebesar 6,6 - 40 person rem/tahun. Sementara pada bronchiolus-nya sebesar 1,5 person rem/tahun.

Rokok ternyata tidak hanya mengandung polonium (210Po) namun juga timbal (210Pb), yang keduanya termasuk dalam kelompok radionuklida dengan toksik sangat tinggi. Po-210 adalah pemancar radiasi- α, sedangkan Pb-210 adalah pemancar radiasi-ß. Kedua jenis radiasi tersebut, terutama radiasi- α berpotensi untuk menimbulkan kerusakan sel tubuh apabila terhisap atau tertelan. Kejadian kanker paru pada perokok pun belakangan ditengarai lebih disebabkan oleh radiasi-α & bukan diakibatkan karena tar dalam tembakau.

Lalu, bagaimana bisa 210Po & 210Pb bisa sampai di rokok? Ternyata tanah, sebagai tempat tumbuh tanaman tembakau- bahan utama rokok, mengandung radium (226Ra). Radium ini adalah atom induk yang nantinya dapat meluruh dan dua di antara sekian banyak unsur luruhannya adalah 210Po & 210Pb. Melalui akar, 210Po & 210Pb pun terserap oleh tanaman tembakau. Hal ini bisa diperparah dengan penggunaan pupuk fosfat yang mengandung kedua unsur tersebut. Tentu saja ini menambah konsentrasi 210Po & 210Pb dalam tembakau.

Mekanisme lain dan yang utama, adalah lewat daun. Po-210 & Pb-210 terendapkan pada permukaan daun tembakau sebagai hasil luruh dari gas radon (222Rn) yang berasal dari kerak bumi & lolos ke atmosfer. Daun tembakau memiliki kemampuan tinggi untuk menahan & kemudian mengakumulasi 210Po & 210Pb karena adanya bulu-bulu tipis ~yang disebut trichomes~ di ujung-ujungnya.

Meski aktivitasnya cukup rendah (3 - 5 mili Becquerel/batang) - dibandingkan dengan ambang batas dosis mematikan Polonium-210 untuk manusia berbobot 80 kg yakni sebesar 148 juta Becquerel (4 mili Curie). Namun aktivitas merokok membuat Polonium-210 terhirup dan terdepositkan ke dalam paru-paru tanpa bisa diekskresikan secara langsung oleh tubuh mengingat sifatnya sebagai logam berat dan memiliki sifat kimiawi mirip Oksigen sehingga tidak bisa diikat oleh CO2 maupun ion HCO3- (kecuali ada perlakuan khusus dengan meminum pil EDTA misalnya, itupun diragukan apa bisa melakukan Polonium removal di paru-paru).

Jika diasumsikan perokok yang bersangkutan mengkonsumsi rata-rata 2 bungkus rokok/hari selama lima tahun tanpa terputus, akumulasi Polonium-210 nya sudah cukup mampu menghasilkan perubahan abnormal pada alvoeli. Dan jika konsumsi terus berlanjut tanpa terputus, maka dalam masa 10 - 15 tahun sejak awal menjadi perokok, perokok yang bersangkutan sudah sangat berpotensi menderita kanker paru-paru, seperti nampak pada penelitian di Brazil (berdasarkan tembakau setempat). Jika konsumsi dikurangi menjadi 1 bungkus rokok/hari tanpa terputus, maka baru dalam 25 - 30 tahun kemudian potensi menderita kanker paru-paru mulai muncul.

Jadi jika pekerja sektor nuklir mendapatkan radiasi 100 person mrem/tahun. Mereka yang bekerja di PLTU dan mereka yang merokok menerima paparan radiasi berkali-kali lipat lebih besar. Jadi wajar saja jika banyak mereka yang mati karena radiasi akibat rokok atau PLTU dibanding para pekerja dalam sektor nuklir.

Dan jika kita ingin lebih ekstrim lagi, sebenarnya para warga Semenanjung Muria (Kudus -Pati - Jepara), dimana disana banyak terdapat industri rokok dan juga beberapa PLTU, sebenarnya sudah menkonsumsi radiasi jauh-jauh hari bahkan sebelum PLTN dibangun.

Pengantar Teori Rig Minyak Bumi

Tak jarang lapisan bebatuan yang berongga tertutup oleh lapisan yang tidak berongga seperti lumpur, garam, atau kapur. Hal tersebut membentuk semacam kurungan bagi hidrokarbon yang terkumpul dalam satu bagian di dalamnya. Seiring pergerakan tektonik, lapisan bebatuan tersebut berubah menjadi lipatan-lipatan yang menyebabkan hidrokarbon ikut menyesuaikan dirinya. Hidrokarbon yang terperangkap kemudian bergerak naik ke bawah lapisan yang tidak berongga, dengan formasi gas di bagian paling atas, minyak dan air mengendap di lapisan bawah.

Proses pembentukan sumur minyak tersebut masih terus terjadi sampai sekarang. Tetapi sumur minyak yang masih muda (kurang dari 60 juta tahun) belum membentuk formasi jenuh yang siap untuk dibor. Di beberapa kasus, erosi dan dorongan kuat dari lipatan-lipatan bebatuan menyebabkan kebocoran hidrokarbon keluar kurungannya. Kadang hidrokarbon tersebut bergerak menuju permukaan dan bisa dipanen tanpa pengeboran, tetapi butuh pemrosesan yang rumit untuk memisahkan pasir dan pengotor-pengotor lainnya.

Data seismik dan pemodelan visual 3D menjadi pedoman utama dalam merencanakan pengeboran. Setelah observasi dan survei pada lapisan tanah dilakukan, maka tahap evaluasi sumur minyak telah selesai dan tahap pengembangan dapat dimulai. Pada tahap ini akan dilakukan pembangunan sumur yang meliputi pengeboran, pemasangan tubular, penyemenan, dan persiapan produksi. Rangkaian peralatan khusus yang digunakan untuk mengebor sumur minyak bumi disebut rig. Ciri utama rig adalah menara yang terbuat dari baja dan digunakan untuk menaik-turunkan pipa-pipa tubular sumur sehingga isi sumur dapat diakses.

Komponen utama dari rig adalah menara (derrick), mimbar dasar (floor), drawworks, sumber tenaga (drive), dan medium lumpur (mud handing). Untuk dapat mengakses sumur, maka suatu segmen pipa (drill string) dipasang setiap 30 meter. Masukan tekanan dan torsi rotasi pada pipa tersebut diperoleh dari rangsangan hidrolik atau listrik yang dibangkitkan di puncak menara. Komponen mata bor (cone) yang terdapat di dasar sumur digunakan untuk menggali bebatuan. Jenis bebatuan yang digali akan mempengaruhi bahan dan jenis material mata bor yang digunakan. Semua komponen tersebut dikontrol penuh oleh drawworks. Perhitungan yang tepat sangat diperlukan agar drawwork tidak merusak pipa dan mata bor yang berada di dasar sumur.
Komponen lumpur berfungsi untuk membawa serpihan bebatuan ke permukaan serta membersihkan dan mendinginkan mata bor di dasar sumur. Agar tidak terjadi kebocoran minyak dan gas, lumpur tersebut harus mampu memberi kesetimbangan nilai tekanan di dasar sumur. Kebocoran minyak dan gas dapat menyebabkan situasi ledakan (blow-out) dan merusak peralatan rig. Alat pencegahan terakhir yang sering digunakan untuk mencegah situasi ledakan yang tidak diinginkan adalah katup pengaman bawah tanah yang dipasang pada pipa sumur.

Biasanya arah pemboran sumur sengaja dideviasi secara vertikal terhadap sumur. Pada pengeboran modern, sumur diakses 80o dari sumbu vertikal agar sekat formasi lebih mudah ditembus dan aliran minyak lebih banyak. Efisiensi pengeboran juga dapat dilakukan dengan membuat cabang-cabang pipa agar sumur di lokasi yang berbeda dapat diakses oleh rig yang sama.

Bentuk dan struktur rig cenderung berbeda-beda sesuai jenis operasi dan fungsinya dalam tahap pengembangan. Rig yang beroperasi di atas permukaan air (offshore rig) digolongkan berdasarkan kedalaman sumur yang diakses. Rentang kedalaman berkisar antara tujuh sampai ribuan meter pada laut yang dalam. Perangkat rig pada drill ship ditaruh di atas sebuah kapal laut dan dikendalikan menggunakan komputer karena daerah operasinya sangat terpencil, jauh dari darat, dan dipakai untuk mengakses sumur pada laut yang dalam. Rig yang telah berhasil mengakses sumur akan diberi pelindung luar (casing) dan semen sehingga lapisan formasi di sepanjang sumur tetap terisolasi dan beban aksial lubang sumur dapat dipertahankan.

Sumber:

Buku Pintar Migas Indonesia – Dari Mana Datangnya Minyak Bumi

Oil and Gas Production Handbook – Reservoir and Wellheads

Hewan Pantai Yang Lucu Dan Mematikan

Apabila kita ingin jalan-jalan ke pantai, jangan sampai terpisah dari rombongan dan harus hati-hati. Mau tahu alasannya?

Karena di pantai ada beberapa hewan yang tampak lucu, tapi bisa mematikan. Layaknya anak kecil yang mudah excited dengan banyak hal-hal baru, mungkin rasa ingin tahu kalian akan mendorong kalian untuk lebih dekat menyentuh hewan yang terlihat lucu misalnya. Apa saja hewan pantai yang harus kita hindari?

The Cone Snail

Cone Snail
Hewan yang satu ini punya bentuk yang indah. Menggemaskan, tepatnya. Siapa yang tidak ingin menyentuhnya dan membawanya pulang? :) Tapi, cone snail ini punya senjata yang sangat berbahaya lho. Bagian ujung pangkal mulutnya bisa menembakkan sengat berupa racun yang sangat mematikan. Korban akan mengalami malfungsi syaraf, di mana tidak ada bagian tubuh yang bisa digerakkan, kemudian meninggal hanya dalam 4 menit.

Poison Arrow Frog

Poison Arrow Frog
Namanya saja sudah mengandung racun :)  Kodok yang bisa melompat hingga 2 meter ini mempunyai senjata mematikan di kelenjar kulitnya. Jangan coba-coba sentuh yaaa!

The Lazy Clown

The Lazy Clown
Hewan yang mirip duri pohon ini hidup di hutan Amazon, di selatan Brazil. Namanya Taturana Tatarana. Lucu yah? Tapi sayang, ternyata hewan ini tidak selucu namanya, karena dia memiliki ratusan duri pada tubuhnya, yang menyimpan racun mematikan dan mengandung Anti-coagulant buat darah kita. Hampir dapat dipastikan bahwa hewan ini telah memakan belasan korban setiap tahunnya.

Beaked Sea Snake

Beaked Sea Snake
Ular laut ini bisa kita jumpai di Kepulauan India dan Asia, pantai-pantai daerah India, atau sekitar Teluk Persia. Nama ilmiahnya Enhydrina schistosa. Lucunya, warga Singapura dan Hongkong suka menjadikan hewan ini sebagai lauk, padahal hewan ini punya racun yang bisa membuat  kamu tidur bersama ikan-ikan di laut untuk selamanya, hehehe

Stone Fish

Stone Fish
Nah, kalau hewan yang satu ini, bentuknya menyerupai batu. Cukup berdiam diri di dasar laut, dan siap meracuni siapa saja yang menyentuhnya dengan duri-duri yang terletak hampir di seluruh bagian tubuhnya. Kabarnya, racun dari hewan ini akan sangat menyiksa korbannya, sehingga si korban merasa lebih baik mengamputasi bagian tubuhnya yang terkena racun tersebut. Wah, sangat mengerikan ya?

Box “Coffin” JellyFish

Box Coffin JellyFish
Kalau ubur-ubur yang satu ini, ada di film 7 Pounds yang dibintangi Will Smith. Dalam film itu, diperlihatkan bagaimana Will Smith mengakhiri hidupnya dengan membiarkan dirinya digigiti oleh Jellyfish. Hewan ini memiliki 24 pasang mata dan tentakel yang mengandung ribuan dosis nematocysts. Dengan ribuan jarum-jarum racun yang menusuk tubuh di seluruh bagian, hampir dapat dipastikan bahwa hewan ini akan membunuh hanya dalam hitungan detik.

Mengenal Amylomyces rouxi

Indonesia dan negara-negara Asia terkenal dengan makanan yang diproduksi melalui fermentasi substrat padat yang mengandung pati dalam jumlah banyak. Contohnya adalah tape singkong dan tape ketan dari Indonesia, chiu-niang dari Cina, arak dari tape ketan dari Vietnam, dan lain-lain. Proses fermentasi tersebut menggunakan dua kelompok mikroorganisme yang memiliki peran berbeda-beda, kelompok pertama akan memecah pati menjadi glukosa, sedangkan kelompok kedua akan mengubah glukosa menjadi etanol. Mikroorganisme yang sering ditemui dan merupakan anggota kelompok pertama adalah Amylomyces rouxii (Nout 2007).
A. rouxii adalah anggota tunggal dari genus Amylomyces. Genus serta spesies tersebut pertama kali dideskripsikan oleh Clamette pada tahun 1892. Kapang tersebut tumbuh dengan cepat dan banyak menghasilkan klamidospora; sporangia tidak atau tidak sempurna terbentuk, mirip dengan Rhizopus, dengan apofisis yang kecil; sporangiofor tegak dengan atau tanpa rizoid. Sinonim A. rouxii adalah Chlamydomucor oryzae, C. rouxii, C. rouxianus, C. javanicus, dan Rhizopus chlamydosporus (Ellis et al. 1976).

(Ellis et al. 1976)
Karakteristik A. rouxii yang menguntungkan dalam proses fermentasi substrat padat yang mengandung pati adalah kemampuan kapang tersebut dalam menghasilkan enzim amyloglucosidase, kemampuannya tumbuh pada substrat mentah (belum dimasak), serta ketidakmampuannya bersporulasi (Nout 2007). Amyloglucosidase (EC 3.2.1.3), atau juga sering disebut amylase, adalah enzim yang berfungsi memutus ikatan alpha-1,4 glikosida pada rantai polisakarida. Hasil akhir dari hidrolisis tersebut adalah dextrins, oligosakarida, maltosa and D-glukosa. Proses tersebut dikenal dengan sakarifikasi. Salah satu penelitian yang dilakukan oleh Dung et al. (2006) menunjukkan bahwa A. rouxii mampu merubah 25% pati menjadi glukosa setelah inkubasi selama tiga hari, serta menghasilkan amyloglucosidase hingga 0,43 U/g.
Walaupun banyak penelitian tentang A. rouxii telah dilakukan, namun kapang tersebut masih menjadi misteri, antara lain adalah habitat alami A. rouxii serta evolusinya. Penggunaan ragi tape yang luas di masyarakat Indonesia membuka peluang banyaknya variasi A. rouxii yang dapat dijadikan sampel dalam memecahkan misteri tersebut.

Sebuah Rahasia dari Terobos Halang Melalui Horizon

Sebuah Rahasia dari Terobos Halang Melalui Horizon

Abstrak :
Radiasi Hawking sering divisualisasikan secara intuisi sebagai partikel-pertikel yang telah menerobos (penghalang) horizon. Namun, tidak jelas di mana penghalang yang harus diterobosnya. Kuncinya adalah untuk mengimplementasikan kekekalan energi, sehingga lubang hitam berkontraksi selama proses radiasi. Sebuah konsekuensi langsung adalah spectrum radiasi tidak dapat sepenuhnya termal. Koreksi terhadap spectrum termal merupakan bentuk yang diharapkan dari sifat keuniteran teori kuantum. Ini mungkin saja dapat merupakan sebuah petunjuk untuk teka-teki informasi lubang hitam.

Secara klasik, sebuah lubang hitam adalah penjara yang mutlak, semua yang masuk ke dalamnya pasti akan terkurung, tak ada jalan keluar. Lebih jauh, karena tidak ada yang dapat keluar, sebuah lubang hitam klasik hanya dapat bertambah ‘besar’ seiring berjalannya waktu. Kemudian, pada waktu itu, merupakan sebuah shock bagi fisikawan ketika Hawking menunjukkan bahwa secara mekanika kuantum lubang hitam sebenarnya dapat meradiasikan partikel. Dengan emisi radiasi Hawking ini, lubang hitam dapat kehilangan energi, mengkerut, lantas akhirnya menguap secara total.

Bagaimana ini dapat terjadi? Ketika sebuah objek yang secara klasik adalah stabil (energi tetap, tidak berubah) menjadi secara mekanika kuantum menjadi tak stabil (ada perubahan), maka secara alamiah kita akan memperkirakan yang terjadi adalah terobos halang (tunneling). Jelas, ketika Hawking pertama kali membuktikan keberadaan radiasi lubang hitam, dia menggambarkannya sebagai terobos halang yang dipicu oleh fluktuasi vakum (munculnya partikel dan antipartikel dari sistem dengan energi awal gabungan = nol, vakum) di dekat horizon. Sebelumnya, horizon merupakan sekat antara bagian ‘dalam’ dan ‘luar’ lubang hitam yang mana cahaya tidak dapat keluar dari padanya. Oleh karena itu, kita sebut lubang hitam ini adalah ‘hitam’ karena tidak ada informasi (secara klasik) yang sampai pada pengamat.

Ide Hawking adalah peristiwa produksi pasangan tepat disekitar horizon, dalam maupun luar. Partikel dengan energi positif yang tercipta dari produksi pasangan di dalam horizon akan menerobos halang horizon – meskipun tidak ada lintasan klask yang mungkin, namun secara kuantum hal ini dapat diperbolehkan. Dalam hal ini kita dapat membayangkan antipartikel (dengan energi negatif) yang tertinggal di dalam horizon mengakibatkan total energi lubang hitam berkurang. Kemudian, jika produksi pasangan terjadi tepat di luar horizon, maka antipartikelnya yang masuk ke dalam horizon, dan efeknya dapat kita bayangkan sama saja dengan sebelumnya. Ada partikel yang ‘lari’ menjauhi lubang hitam (inilah radiasi) dan mengakibatkan energi (massa) lubang hitam berkurang.

Namun sayangnya, meskipun gambaran Hawking seperti yang diterangkan di atas, namun penurunan asli mula-mula tidaklah memanfaatkan gambaran ini secara lengkap. Ini cukup ganjil. Untuk memanfaatkan sepenuhnya gambaran ini, kita perlu mengatasi 2 masalah : pertama yaitu teknis, untuk melakukan perhitungan terobos halang, dibutuhkan sistem koordinat yang berkelakuan baik di horizon (tidak ada infinity). Kedua: konseptual, apa penghalang yang harus diterobos?

Biasanya, ketika terobos halang terjadi, terdapat dua daerah klasik yang terpisah yang digabungkan oleh sebuah lintasan dalam waktu imajiner/kompleks. Dalam limit WKB (sebuah istilah aproksimasi dalam kuantum), peluang untuk terobos halang dihubungkan dengan bagian imajiner dari pada aksi (partikel) ketika melewati lintasan yang secara klasik dilarang dengan ungkapan

    G µ exp (-2 Im S)

dengan S merupakan aksi pada lintasan terkait. Namun masalah muncul ketika teknik ini dipakai untuk lubang hitam. Sepertinya, daerah ‘luar’ dan ‘dalam’ horizon ini terpisah dalam jarak nol cm. Katakan sebuah partikel hasil produksi pasangan terpisah secara infinitesimal diluar horizon, namun ia tetap dapat ‘lari’. Bagaimana ini dapat terjadi?

Seperti yang Hawking mula-mula gambarkan, bahwa partikel menerobos horizon, ini memang terjadi. Namun penjelasannya dengan argumen yang sedikit rumit, karena tidak terdapat penghalang yang sebelumnya telah ada (sudah ada dari sononya). Namun, yang terjadi adalah partikel menerobos penghalang yang ia ciptakan sendiri (ingat dalam relativitas, gerak benda ditentukan oleh geometri disekitarnya, geometri ini ditentukan oleh kandungan massa dan momentum sudut dari lubang hitam). Point terpenting yaitu energi harus kekal. Ketika radiasi terjadi, energi/massa lubang hitam berkurang, maka ia makin mengkerut. Pengkerutan ini berdampak pada makin kecilnya radius lubang hitam tersebut. Ukuran kontraksi yang terjadi tentu bergantung pada jumlah energi partikel yang keluar. Makin besar energi keluar, makin besar juga kontraksi yang terjadi. Di sini sudah terlihat bahwa partikel yang keluar itulah yang mendefinisikan penghalang. Namun kita akan lihat ini lebih jelas pada bagian selanjutnya.

Lebih lengkapnya tentu kita sangat butuh teori lengkap kuantum gravitasi di sini (yang sampai sekarang masih jauh dari final). Katakan dalam sudut pandang yang diterima umum, kita butuh mengikut sertakan graviton (medan gauge yang memediasi interaksi gravitasi secara kuantum, seperti foton untuk interaksi elektromagnetik kuantum). Namun karena kita membahas sistem lubang hitam yang simetri bola, maka tidak diperlukan analisis graviton yang memiliki spin 2, karena nanti jadinya tidak algi simetri bola. Yang diperlukan hanyalah parikel spin nol (skalar) sehingga derajat kebebasan yang akan dibahas hanyalah posisi parikel ketika terjadi terobos halang.

Dipersenjatai pandangan ini, kita dapat melakukan perhitungan untuk proses terobos halang dalam radiasi Hawking. Koordinat yang digunakan tentunya bukanlah standar seperti sperti Schwarschild, karena di horizon koordinat ini tidak berkelakuan baik, ada ketidak berhinggaan untuk sector spasial radius, dr. Namun dengan transformasi Painleve (yang menemukan sebuah transformasi sebagai kritik atas relativitas umum di mana singularitas dapat dibuang hanya dengan sebuah trasnformasi koordinat). Elemen garis akibat transformasi ini untuk geometri yang mula-mula Schwarschild adalah

ds2=-(1-2M/r)dt2+2.sqrt(2M/r)dtdr+dr2+r2dX2

dengan dX2 adalah metrik untuk bola 2 dimensi.

Dengan elemen garis ini, kita dapat menghitung aman integral dari aksi partikel (p.dr dengan p=momentum dan dr=infinitesimal radius). Integrasi radius dilakukan dari radius horizon mula-mula sampai pada saat partikel telah keluar, dengan energi E, yaitu dari r=2M ke r=2(M-E). Integral inilah yang analog dengan integral perhitungan probabilitas terobos halang biasa. Jelas bahwa penghalang dalam radiasi Hawking bergantung pada energi partikel keluar, seperti yang pernah disinggung sebelumnya.

Dengan menyamakan exp (-2 Im S) hasil perhitungan terhadap factor Boltzman, exp(E/T) dengan T = temperatur Hawking, maka dapat ditemukan temperatur Hawking seperti yang mula-mula ditemukan dulu.

Spektroskopi Gamma

Sinar gamma sebenarnya hampir sama dengan sinar X , hanya saja sinar X lebih lemah. Sinar gamma ini dihasilkan oleh suatu bahan radioaktif. Sinar gamma adalah termasuk sinar yang tidak dapat dilihat oleh mata, untuk itu perlu adanya detektor. Detektor yang digunakan adalah NaI (Tl), detektor ini juga digunakan untuk sinar x, hanya saja detektor untuk gamma lebih tebal sedikit. Cara kerja dari detektor ini adalah sebagai berikut :

Apabila sinar gamma mengenai detektor NaI(Tl) maka akan terjadi tiga efek, yaitu efek fotolistrik, efek compton dan bentukan pasangan. Efek fotolistrik terjadi apabila ada sinar gamma yang mengenai elektron d kulit K dari sebuah atom maka elektron tersebut akan kosong sehingga akan diisi oleh elektron dari kulit yang lain, transisi ini yang menyebabkan terjadinya efek fotolistrik. Efek compton adalah efek yang terjadi apabila sinar gamma (dalam hal ini) mengenai elektron bebas atau elektron terluar dari suatu atom yang dianggap daya ikatnya sangatlah kecil sehingga sama dengan elektron bebas. Apabila sinar gamma memancar ke elektron bebas ini maka akan terjadi hamburan, yang disebut hamburan compton. Sedangkan Efek bentukan pasangan terjadi ketika sinar gamma melaju di dekat inti atom sehingga akan terbentuk pasangan positron dan elektron, syaratnya tenaga sinar haruslah cukup.

Dari ketiga efek tersebut, efek comptonlah yang paling kuat hal ini diakibatkan karena tenaga yang digunakan untuk melepas elektron juga yang lebih besar. Dan dari ketiga efek tersebut menghasilkan sintilasi atau pancaran cahaya, pancaran cahaya ini akan diteruskan ke fotokatoda yang dapat menguraikan cahaya ini menjadi elektron -elektron. Elektron ini masih lemah maka harus dikuatkan lagi dayanya oleh pre amplifier, dan dikuatkan tinggi pulsa dengan amplifier. Lalu elektron tadi dimasukkan ke PMT yang terdiri dari tegangan bertingkat dan banyak katoda, keluaran dari PMT menjadi berganda. Kemudian melalui counter nilai cacahnya dapat diketahui.

Yang perlu diketahui bahwa dalam spektroskopi gamma juga dicari resolusi tenaganya. Ternyata semakin kecil resolusinya semakin bagus data yang diperoleh, semakin besar resolusinya maka semakin tidak valid data yang diperoleh. Pola berfikirnya adalah sebagai berikut : dari data cacah nanti akan dapat dibuat grafik, dari grafik itu akan terlihat puncak-puncak gunung. Apabila resolusinya besar maka bisa saja didapat satu puncak gunung, eh ternyata didalamnya banyak punca-puncak yang tidak terbaca. Berarti resolusi besar belum tentu baik lho.

Perkembangan Teori Atom

Dari zaman yunani kuno hingga sekarang, model dan teori atom terus berkembang. Melalui model dan teori atom, kita dapat mengetahui struktur suatu atom. Perkembangan tersebut tidak dapat dilepaskan dari upaya para ilmuwan diantaranya Democritus, John Dalton, J.J. Thomson, Rutherford, Chadwick, Milikan, Niels Bohr, Schrodinger, de Broglie dan Heisenberg.


1.  Teori Atom Democritus (460 SM–370 SM)

Democritus mengembangkan teori tentang penyusun suatu materi. Menurut Democritus jika suatu materi dibelah terus-menerus suatu ketika akan diperoleh suatu partikel fundamental yang disebut sebagai atom (Yunani: atomos = tidak terbagi). Pendapat ini ditolak oleh Aristoteles (384–322 SM), yang berpendapat bahwa materi bersifat kontinu (materi dapat dibelah terus-menerus sampai tidak berhingga). Aristoteles lebih menyetujui teori Empedokles, yaitu materi tersusun atas api, air tanah dan udara. Sekitar tahun 1592 - 1655  Gasendi mengemukakan bahwa atom merupakan bagian terkecil suatu zat.

2.  Teori Atom Dalton (1803)

John Dalton mengungkapkan bahwa :
a. Atom adalah bagian terkecil dari suatu zat.
b. Atom berbentuk bola sederhana yang sangat kecil, tidak dapat dibelah, diciptakan ataupun dimusnahkan.
c. Unsur yang sama mengandung atom-atom yang sama.
d. Atom sejenis memiliki sifat yang sama dalam segala hal, sedangkan atom yang berbeda memiliki sifat yang berbeda.
e. Reaksi kimia terjadi karena adanya penggabungan dan pemisahan atom-atom.
f.  Bila atom-atom bergabung akan membentuk molekul. Bila atom-atom yang bergabung sama akan terbentuk molekul unsur,     sedangkan bila atom-atom yang bergabung berbeda akan terbentuk molekul senyawa.

Kelemahan teori atom Dalton

Pada perkembangan selanjutnya ditemukan berbagai fakta yang tidak dapat dijelaskan oleh teori tersebut, antara lain :
a. Tidak dapat menjelaskan sifat listrik materi.
b. Tidak dapat menjelaskan cara atom-atom saling berikatan.
c. Model atom  Dalton tidak dapat menjelaskan perbedaan antara atom unsur yang satu dengan unsur yang lain.

Kelemahan –kelemahan tersebut dapat dijelaskan setelah ditemukan beberapa partikel penyusun atom, seperti elektron ditemukan oleh Joseph John Thomson tahun 1900, penemuan partikel proton oleh Goldstein tahun 1886.

Kelebihan teori atom Dalton

a. Dapat menerangkan Hukum Kekekalan Massa (Hukum Lavoisier)
b. Dapat menerangkan Hukum Perbandingan Tetap (Hukum Proust)


3. Teori Atom Thomson

Berdasarkan percobaan tentang hantaran listrik melalui tabung hampa/tabung pengawan muatan (discharge tube) atau tabung sinar katode. Dalam tabung katode tekanan gas dalam tabung dapat diatur melalui pompa isap (pompa vakum). Pada tekanan cukup rendah  dan tegangan yang cukup tinggi (beberapa ribu volt), gas dalam tabung akan berpijar dengan cahaya yang warnanya tergantung pada jenis gas dalam tabung (gas neon berwarna merah, gas natrium berwarna kuning). Jika tekanan gas dikurangi, maka daerah didepan katode akan menjadi gelap. Daerah gelap ini akan bertambah jika tekanan gas dalam tabung terus dikurangi, akhirnya seluruh tabung menjadi gelap, tetapi bagian tabung didepan katode berpendar dengan warna kehijauan.

Melalui percobaan dapat ditunjukkan bahwa  perpendaran tersebut disebabkan oleh suatu radiasi yang memancar dari permukaan katode menuju anode. Oleh karena berasal dari katode, maka radiasi ini disebut sinar katode. Hasil percobaan tabung katoda ini membuktikan bahwa ada partikel bermuatan negatif dalam suatu atom karena sinar tersebut dapat dibelokkan ke arah kutub positif medan listrik. selanjutnya sinar katode ini merupakan partikel yang bermuatan negatif dan oleh Thomson partikel ini dinamakan elektron.

Termodinamika

Termodinamika adalah kajian tentang kalor (panas) yang berpindah. Dalam termodinamika kamu akan banyak membahas tentang sistem dan lingkungan. Kumpulan benda-benda yang sedang ditinjau disebut sistem, sedangkan semua yang berada di sekeliling (di luar) sistem disebut lingkungan.

Usaha Luar

Usaha luar dilakukan oleh sistem, jika kalor ditambahkan (dipanaskan) atau kalor dikurangi (didinginkan) terhadap sistem. Jika kalor diterapkan kepada gas yang menyebabkan perubahan volume gas, usaha luar akan dilakukan oleh gas tersebut. Usaha yang dilakukan oleh gas ketika volume berubah dari volume awal V1 menjadi volume akhir V2 pada tekanan p konstan dinyatakan sebagai hasil kali tekanan dengan perubahan volumenya.
W = pV= p(V2V1)
Secara umum, usaha dapat dinyatakan sebagai integral tekanan terhadap perubahan volume yang ditulis sebagai
pers01
Tekanan dan volume dapat diplot dalam grafik pV. jika perubahan tekanan dan volume gas dinyatakan dalam bentuk grafik pV, usaha yang dilakukan gas merupakan luas daerah di bawah grafik pV. hal ini sesuai dengan operasi integral yang ekuivalen dengan luas daerah di bawah grafik.
fig2004

Gas dikatakan melakukan usaha apabila volume gas bertambah besar (atau mengembang) dan V2 > V1. sebaliknya, gas dikatakan menerima usaha (atau usaha dilakukan terhadap gas) apabila volume gas mengecil atau V2 < V1 dan usaha gas bernilai negatif.

Energi Dalam

Suatu gas yang berada dalam suhu tertentu dikatakan memiliki energi dalam. Energi dalam gas berkaitan dengan suhu gas tersebut dan merupakan sifat mikroskopik gas tersebut. Meskipun gas tidak melakukan atau menerima usaha, gas tersebut dapat memiliki energi yang tidak tampak tetapi terkandung dalam gas tersebut yang hanya dapat ditinjau secara mikroskopik.
Berdasarkan teori kinetik gas, gas terdiri atas partikel-partikel yang berada dalam keadaan gerak yang acak. Gerakan partikel ini disebabkan energi kinetik rata-rata dari seluruh partikel yang bergerak. Energi kinetik ini berkaitan dengan suhu mutlak gas. Jadi, energi dalam dapat ditinjau sebagai jumlah keseluruhan energi kinetik dan potensial yang terkandung dan dimiliki oleh partikel-partikel di dalam gas tersebut dalam skala mikroskopik. Dan, energi dalam gas sebanding dengan suhu mutlak gas. Oleh karena itu, perubahan suhu gas akan menyebabkan perubahan energi dalam gas. Secara matematis, perubahan energi dalam gas dinyatakan sebagai
untuk gas monoatomik
pers02
untuk gas diatomik
pers03
Dimana U adalah perubahan energi dalam gas, n adalah jumlah mol gas, R adalah konstanta umum gas (R = 8,31 J mol−1 K−1, dan T adalah perubahan suhu gas (dalam kelvin).

Hukum I Termodinamika

Jika kalor diberikan kepada sistem, volume dan suhu sistem akan bertambah (sistem akan terlihat mengembang dan bertambah panas). Sebaliknya, jika kalor diambil dari sistem, volume dan suhu sistem akan berkurang (sistem tampak mengerut dan terasa lebih dingin). Prinsip ini merupakan hukum alam yang penting dan salah satu bentuk dari hukum kekekalan energi.
Sistem yang mengalami perubahan volume akan melakukan usaha dan sistem yang mengalami perubahan suhu akan mengalami perubahan energi dalam. Jadi, kalor yang diberikan kepada sistem akan menyebabkan sistem melakukan usaha dan mengalami perubahan energi dalam. Prinsip ini dikenal sebagai hukum kekekalan energi dalam termodinamika atau disebut hukum I termodinamika. Secara matematis, hukum I termodinamika dituliskan sebagai
Q = W + U
Dimana Q adalah kalor, W adalah usaha, dan U adalah perubahan energi dalam. Secara sederhana, hukum I termodinamika dapat dinyatakan sebagai berikut.
Jika suatu benda (misalnya krupuk) dipanaskan (atau digoreng) yang berarti diberi kalor Q, benda (krupuk) akan mengembang atau bertambah volumenya yang berarti melakukan usaha W dan benda (krupuk) akan bertambah panas (coba aja dipegang, pasti panas deh!) yang berarti mengalami perubahan energi dalam U.

Proses Isotermik

Suatu sistem dapat mengalami proses termodinamika dimana terjadi perubahan-perubahan di dalam sistem tersebut. Jika proses yang terjadi berlangsung dalam suhu konstan, proses ini dinamakan proses isotermik. Karena berlangsung dalam suhu konstan, tidak terjadi perubahan energi dalam (U = 0) dan berdasarkan hukum I termodinamika kalor yang diberikan sama dengan usaha yang dilakukan sistem (Q = W).
Proses isotermik dapat digambarkan dalam grafik pV di bawah ini. Usaha yang dilakukan sistem dan kalor dapat dinyatakan sebagai
pers04

Dimana V2 dan V1 adalah volume akhir dan awal gas.
isothermal_process

Proses Isokhorik

Jika gas melakukan proses termodinamika dalam volume yang konstan, gas dikatakan melakukan proses isokhorik. Karena gas berada dalam volume konstan (V = 0), gas tidak melakukan usaha (W = 0) dan kalor yang diberikan sama dengan perubahan energi dalamnya. Kalor di sini dapat dinyatakan sebagai kalor gas pada volume konstan QV.
QV = U

Proses Isobarik

Jika gas melakukan proses termodinamika dengan menjaga tekanan tetap konstan, gas dikatakan melakukan proses isobarik. Karena gas berada dalam tekanan konstan, gas melakukan usaha (W = pV). Kalor di sini dapat dinyatakan sebagai kalor gas pada tekanan konstan Qp. Berdasarkan hukum I termodinamika, pada proses isobarik berlaku
pers05

Sebelumnya telah dituliskan bahwa perubahan energi dalam sama dengan kalor yang diserap gas pada volume konstan
QV =U
Dari sini usaha gas dapat dinyatakan sebagai
W = QpQV
Jadi, usaha yang dilakukan oleh gas (W) dapat dinyatakan sebagai selisih energi (kalor) yang diserap gas pada tekanan konstan (Qp) dengan energi (kalor) yang diserap gas pada volume konstan (QV).
diag11

Proses Adiabatik

Dalam proses adiabatik tidak ada kalor yang masuk (diserap) ataupun keluar (dilepaskan) oleh sistem (Q = 0). Dengan demikian, usaha yang dilakukan gas sama dengan perubahan energi dalamnya (W = U).
Jika suatu sistem berisi gas yang mula-mula mempunyai tekanan dan volume masing-masing p1 dan V1 mengalami proses adiabatik sehingga tekanan dan volume gas berubah menjadi p2 dan V2, usaha yang dilakukan gas dapat dinyatakan sebagai
pers06

Dimana γ adalah konstanta yang diperoleh perbandingan kapasitas kalor molar gas pada tekanan dan volume konstan dan mempunyai nilai yang lebih besar dari 1 (γ > 1).
341px-adiabaticsvg
Proses adiabatik dapat digambarkan dalam grafik pV dengan bentuk kurva yang mirip dengan grafik pV pada proses isotermik namun dengan kelengkungan yang lebih curam.

Pemanfaatan Uranium Sebagai Bahan Bakar

Uranium adalah mineral yang memancarkan radiasi nuklir atau bersifat radioaktif, digunakan dalam berbagai bidang salah satunya adalah sebagai bahan bakar nuklir. Uranium merupakan suatu unsur kimia dalam tabel periodik yang memiliki lambang U dan nomor atom 92. Sebuah logam berat, beracun, berwarna putih keperakan dan radioaktif alami, uranium termasuk ke seri aktinida (actinide series). Uranium biasanya terdapat dalam jumlah kecil di bebatuan, tanah, air, tumbuhan, dan hewan (termasuk manusia).
Uranium memiliki 3 Isotop :
- U234 kadar sangat kecil
- U235 kadar 0,715 = 0,7 %
- U238 kadar 99,285 = 99,3%
Isotop U235 digunakan sebagai bahan bakar reaktor nuklir dan senjata nuklir.
Uranium memiliki sifat fisik yang khas :
- Ditemukan di alam dalam bentuk U3O atau UO berwarna hijau kekuning-kuningan dan coklat tua.
- Bila disinari cahaya ultra ungu, uranium akan mengeluarkan cahaya fluoresensi yang sangat indah

Dalam fisika nuklir, sebuah reaksi nuklir adalah sebuah proses di mana dua nuklei atau partikel nuklir bertubrukan, untuk memproduksi hasil yang berbeda dari produk awal. Pada prinsipnya sebuah reaksi dapat melibatkan lebih dari dua partikel yang bertubrukan, tetapi kejadian tersebut sangat jarang. Bila partikel-partikel tersebut bertabrakan dan berpisah tanpa berubah (kecuali mungkin dalam level energi), proses ini disebut tabrakan dan bukan sebuah reaksi.
Dikenal dua reaksi nuklir, yaitu reaksi fusi nuklir dan reaksi fisi nuklir. Reaksi fusi nuklir adalah reaksi peleburan dua atau lebih inti atom menjadi atom baru dan menghasilkan energi, juga dikenal sebagai reaksi yang bersih. Reaksi fisi nuklir adalah reaksi pembelahan inti atom akibat tubrukan inti atom lainnya, dan menghasilkan energi dan atom baru yang bermassa lebih kecil, serta radiasi elektromagnetik. Reaksi fusi juga menghasilkan radiasi sinar alfa, beta dan gamma yang sangat berbahaya bagi manusia.
Contoh reaksi fusi nuklir adalah reaksi yang terjadi di hampir semua inti bintang di alam semesta. Senjata bom hidrogen juga memanfaatkan prinsip reaksi fusi tak terkendali. Contoh reaksi fisi adalah ledakan senjata nuklir dan pembangkit listrik tenaga nuklir.
Unsur yang sering digunakan dalam reaksi fisi nuklir adalah Plutonium dan Uranium (terutama Plutonium-239, Uranium-235), sedangkan dalam reaksi fusi nuklir adalah Lithium dan Hidrogen (terutama Lithium-6, Deuterium, Tritium).

Penelitian Kandungan Gas di Daerah Pasuruan

Dewasa ini eksplorasi sumber energi khususnya minyak bumi dan gas berkembang sangat pesat sejalan dengan pemenuhan kebutuhan hidup manusia yang semakin mendesak. Survey seismik pada seismik pantul dangkal saluran tunggal mengungkapkan keadaan bawah permukaan dasar laut dengan hasilnya yang sangat baik untuk eksplorasi gas biogenik, yaitu memberikan informasi mengenai struktur geometri bawah permukaan dasar laut.
Morfologi dasar laut daerah penyelidikan relatif landai dengan kedalaman laut berkisar antara 2 hingga 25 meter. Kedalaman laut bertambah ke arah bagian timur laut dan mendangkal ke arah bagian barat dan barat daya. Perkiraan perhitungan secara kasar bahwa potensi terukur gas dalam sedimen di Perairan Pasuruan pada sedimen runtunan 1 yang berumur Holosen adalah sebesar 168.820.000 m . Nilai ini berdasarkan luas daerah penyebaran dari sedimen bermuatan gas.

Pengolahan data Seismik Pantul Dangkal

Hasil rekaman seismik pantul dangkal merupakan penampang waktu (Time Section) yang menggambarkan bidang-bidang pantul (reflektor) dari permukaan air laut hingga bawah dasar laut pada kedalaman tertentu.
Hasil analisa laboratorium contoh batuan yang diambil dari dasar laut di perairan Pasuruan dan sekitarnya sangat berguna sekali untuk memperkirakan kecepatan rambat gelombang seismik (seismic velocity) pada sekuen paling atas dalam satuan meter yang akan di tuangkan dalam peta kedalaman sequen (peta Isopah). Panjang lintasan yang telah dilakukan untuk perekaman kondisi bawah dasar laut dengan metoda seismik pantul dangkal ini adalah sepanjang 150 kilometer dengan lintasan utama berarah utara- selatan hampir tegak lurus pantai Pasuruan.
Dalam penelitian ini metoda seismik menggunakan pemancar energi Uniboom yang mempunyai resolusi tinggi dengan kemampuan identifikasi runtunan-runtunan sedimen hingga sekitar 50 meter di bawah dasar laut. Semua posisi ditentukan menggunakan Sistem Satelit Navigasi Terpadu dengan perangkat Magelen M1000/Garmin Survey II yang dilengkapi paket piranti lunak modifikasi PPGL sehingga didapatkan akurasi ketelitiam posisi kurang dari 20 meter. Akusisi atau pengambilan data di lapangan menggunakan peta kerja sekala 1 : 50.000. Perhitungan ketebalan sequen yaitu dengan mengalikan ketebalan sequen dalam satuan waktu (detik) dengan kecepatan rambat gelombang seismik yang diperkirakan dalam satuan meter perdetik (m/sec). Untuk perairan Jawa timur yang tidak memiliki variasi dalam jenis batuannya, maka asumsi kecepatan rambat sinyal akustik pada sedimen lumpur dan pasir (Unit IA) adalah 1600 m/sec, sekuen II (Unit IB) 1650 m/sec, sekuen III (unit IC) 1700 m/sec, dan sekuen IV (unit ID) 1750 m/sec.
Data-data yang perlu diketahui dalam perhitungan kedalaman dan ketebalan adalah :
a. Waktu tempuh gelombang pantul
b. Penentuan skala vertical penampang seismik

Waktu Tempuh Gelombang Pantul

Waktu tempuh gelombang pantul bolak-balik diperoleh dengan cara mengukur jarak vertikal tiap-tiap perlapisan dari hasil rekaman analog seismik. Tahap pertama adalah menarik batas-batas tiap lapisan. Setelah batas perlapisan diketahui maka diukur pula lebar satu sapuan (sweep). Seperti diketahui bahwa penampang seismik yang diperoleh waktu tempuh two way time-nya adalah 250 milidetik. Dari rekaman seismik hasil yang diperoleh merupakan penampang waktu (Time Section). Penampang waktu tersebut menggambarkan waktu tempuh gelombang seismik bolak-balik. Untuk mendapatkan waktu tempuh gelombang bolak-balik, perlu diketahui waktu rata-rata picu (firing rate). Sebagai contoh pada rekaman digunakan firing rate ¼ detik / Sweep. Dengan mengukur jarak vertikal (secara grafis) masing-masing perlapisan, maka waktu tempuh dari permukaan laut hingga batas-batas perlapisan (bidang pantul) dapat diketahui.
Berikut ini akan diberikan cara menentukan waktu tempuh gelombang seismik bolak-balik pada lintasan 1 sweep = 0,25 detik = 250 mili detik. Satu sweep terdiri dari 10 kolom dimana tiap kolom 33 mm. Oleh karena itu lebar 10 kolom = 330 mm (telah diproses) .Dengan mengukur dari permukaan laut hingga mencapai dasar laut, misalkan didapat = 5 mm, Waktu tempuh gelombang bolak-balik (TWT) dari permukaan hingga dasar laut adalah 250 milidetik/330mm x 5 mm = 3,78 mili detik.

Penentuan Skala Vertikal Penampang Seismik

Panjang garis seismic section adalah 250 mili detik (TWT) , karena waktu tempuh gelombang bolak-balik TWT (Two Way Time) sehingga waktu tempuh itu dibagi dua yaitu 250/2 = 125 mili detik.  Karena ada 10 kolom maka125/10 = 12,5 milidetik dengan perbandingan dari panjang tiap marking dan semua kolom, maka 12,5/250 = 0,05 mili detik karena cepat rambat gelombang seismik dalam air adalah 1500 meter / detik, maka 12,5/250 x 1500 = 75 meter dengan Sweep rate ¼ detik / Sweep maka 12,5/250 x 1500 x 0,25 = 18,75 meter karena sapuan ¼ detik / Sweep pada setiap ½ detik ledakan, maka (12,5/250 x 1500 x 0,25)x 2 = 37,5 meter.
Sehingga Skala vertikal untuk kedalaman air adalah 37,5 m pada penampang seismik. Karena dibagi menjadi 3 kolom maka tiap kolom 12,5 meter. Dengan perbandingan (33/ 330 x 1500 x 0,25)/3 = 12,5. Penentuan kedalaman air dapat juga dikoreksi terhadap MSL (Mean Sea Level) dari pengamatan pasang surut laut. Untuk menentukan skala vertikal ketebalan sedimen, maka asumsi kecepatan rambat sinyal akustik diambil 1600 meter / detik. Sehingga dengan cara yang sama, (12,5/250 x 1600 x 0,25)x 2 = 40 meter. Atau (33/330 x 1600 x 0,25)/3 = 13,3 meter.

Perbedaan VGA ATi,Nvidia, Intel GMA,SiS

pada topik kali ini saya akan menjelaskan berbaai perbedaan macam-macam VGA tersebut :

1.ATi
VGA ini bekerjasama dg prosesor AMD (Advanced Micro Devices) dan Bertipe Internal DAC (VGA dg RAM saling bekerja sama).. tetapi sudah banyak diaplikasikan pada prosesor Intel, dan permasalahan yang sering dijumpai pada VGA ini (khususnya seri 3200,4100,4200(DDR2),) bila digunakan untuk bermain game kelas Enthusiast VGA seri ini agak berat apabila diaplikasikan pada resolusi dan detail High,,dan untuk meminimalisirnya anda bisa melakukan sedikit trik di ATi Catalyst Control Centernya...dan bisa menambahkan aplikasi seperti Game Booster,AMD Overdrive..dsb,,...dan pada seri 5000 keatas saya kira tidak ada masalah karena Memory sudah Menggunakan DDR3. utk mendownload aplikasi Game Booster Silakan klik link di samping ini: Game Booster 2.1 at Hotfile

2.Nvidia
merk VGA ini sangat diminati karena VGA ini Bertipe Integrated RAMDAC (VGA dg RAM sudah Terpisah,) dan karena VGA ini Bertipe Integrated jd kerja RAM dg VGA sudah terpisah..sehingga mengefek pada kerja game juga...meskipun anda aktifkan Resolusi Tinggi dan High Detail..tidak ada masalah pada Game tersebut.. tetapi VGA ini mempunyai kelemahan yaitu mudah panas dan Shadernya terbilang agak kasar...dan keunggulannya utk memainkan game pada VGA ini..jg lupa pkek helm...soalx cepet bet..:D


3.Intel GMA (Graphic Media Accelerator)
VGA ini merupakan VGA default dari procie Intel, dan sudah terbilang kuat untuk digunakan game kelas Mainstream,, dan kekuatan utama dari VGA ini adalah Shadernya terbilang masi baru dan apabila aktif Anti Aliasing dan Anisotropicnya...VGA ini lumayan kuat utk mentoleransinya....


4.SiS (Silicon Integrated System)
VGA ini rata-rata terdapat di Laptop Pabrikan Lokal..seperti A Note,Axioo..dsb...VGA ini terbilang VGA Low-End dan apabila dijalankan utk game..VGA ini masih ada di Tingkat Newbie...dan bila utk game VGA ini masih kurang utk Para Gamer sejati..tp apabila Budget anda Pas2 an dan Laptop digunakan untuk kegiatan Normal..anda bisa Mempertimbangkan VGA Intel Dan SiS ini......

Sekian Tips Dari saya......Diharap Membantu utk anda yang akan Mencari Laptop atau PC.......trims...

Intel dan Google,Adakan Kerjasama Ciptakan Chip Komputer Terbesar Di Dunia

Intel dan Google mengumumkan kerjasamanya untuk memungkinkan arsitektur pembuat chip komputer terbesar di dunia itu dipasangkan di produk keluaran Google, Ponsel pintar Android berbasis Intel yang direncanakan dipasarkan pada pertengahan 2012.

Dalam siaran pers bersama, kedua perusahaan tersebut mengatakan sistem operasi Android nanti akan mendukung prosesor Intel Atom yang hemat energi.
Dalam Forum Pengembang Intel di San Fransisco, Selasa (13/9), Pejabat Eksekutif Tertinggi Intel Paul Otellini mengatakan chip ponsel pintar Intel tersebut dinamakan Medfield dan dibuat berdasarkan arsitektur komputer pribadi (PC) Intel.

Otellini mengatakan bahwa sejumlah vendor di seluruh dunia akan meluncurkan ponsel pintar Android yang berbasis Medfield pada pertengahan 2012. Andy rubin, Wakil Presiden Senior Google untuk perangkat bergerak, tampil di panggung beserta Otellini dan menyampaikan garis pokok kerja sama antara kedua perusahaan.

Intel telah berjuang keras untuk mendapat tempat di pasar ponsel pintar dan komputer tablet. Hampir semua perangkat bergerak sekarang ini menggunakan chip yang berbasis arsitektur komputer ARM Holdings, yang dianggap lebih hemat energi daripada chip buatan Intel.

Nokia berencana untuk memasang ponsel pintar mereka dengan chip buatan Intel tahun ini, namun batal dan sebagai gantinya mereka memakai chip buatan ARM dengan sistem operasi Windows Phone 7.
Otellini mengatakan Intel nantinya akan mendapatkan keuntungan dalam menyediakan chip untuk ponsel pintar karena bisnis itu berjalan bukan untuk mencari pemenang utama dan kinerja produk yang dihasilkan akan terus meningkat.

Movement Radars

Radar (Radio Detection and Ranging) adalah sebuah sistem yang menggunakan gelombang elektromagnetik untuk mengidentifikasi keberadaan suatu benda (arah dan kecepatan dari objek).

Konsep sensor:
Sebuah antena pemancar dan penerima dipasang pada suatu titik untuk mengirimkan dan menangkap kembali pantulan gelombang radio. Beberapa pantulan gelombang radio yang sudah melemah bisa dikuatkan kembali dengan peralatan modulasi. Gelombang radio tersebut bisa terpantul jika terdapat perbedaan kerapatan atom yang begitu besar antara sebuah objek dengan lingkungan (dalam hal ini adalah udara) di sekitarnya. Pantulan gelombang radio tersebut terpancar sesuai dengan besar panjang gelombangnya dan bentuk dari objek pemantulnya. Jika panjang gelombang yang dipancarkan lebih pendek dari ukuran objek yang ada maka gelombang tersebut akan dipantulkan kembali seperti gelombang cahaya yang terpantul pada sebuah cermin.

Keterangan tambahan yang dapat diproses dari benda yang lewat:
•Jarak:
Salah satu cara yang bisa dipakai untuk mengukur jarak suatu objek dari antena ialah dengan mengirimkan sinyal gelombang radio (radiasi elektromagnetik) dan mengukur jeda waktu pantulan gelombangnya.
•Kecepatan:
Perbedaan frekuensi antara sinyal gelombang yang dipancarkan dan sinyal gelombang yang dipantulkan kembali dapat digunakan untuk menghitung kecepatan dari benda tersebut. Hal itu juga bisa diukur dengan menggunakan persamaan momentum antara dua buah benda (gelombang radio dan objek).

Komponen sistem sensor Radar:
•Transmiter untuk membangkitkan sinyal radio dari osilator atau medan magnet yang dikontrol durasinya oleh modulator.
•Waveguide adalah penghubung antara Transmiter dan Antena.
•Receiver adalah penerima pantulan sinyal radio (dalam hal ini sinyal dipantulkan kembali ke Transmiter).
•Peralatan elektronik yang akan memodulasi kembali sinyal yang telah diterima dan memprosesnya sesuai dengan software yang telah diprogram untuk menghitung jumlah kendaraan yang lewat.
•Penghubung yang akan mengantarkan informasi ke pengguna

Gelombang radio yang biasa dipakai sebagai alat sensor gerak kendaraan:
•Long Range Surveillance:
Frequency Range = 1-2 GHz, Wavelength Range = 5-30 cm;
•Medium-Resolution Mapping and Ground Surveillance:
Frequency Range = 8-12 GHz, Wavelength Range = 2.5-3.75 cm;

Sistem Peringatan Dini Untuk Tsunami

Menurut bahasa yang mudah dimengerti, sistem peringatan dini adalah sistem yang menginformasikan kemungkinan terjadinya bahaya sebelum bahaya tersebut terjadi. Termasuk sistem biologis yang dimiliki oleh makhluk hidup maupun sistem hasil buatan manusia. Yang termasuk sistem biologis adalah rasa sakit dan rasa takut (yang umumnya menjadi bagian dari insting) yang dimiliki makhluk hidup secara alamiah. Sementara yang termasuk sistem buatan adalah sistem yang dirancang manusia untuk mengumpulkan data-data terkait dan mengolahnya menjadi parameter kemungkinan terjadinya bahaya. Sistem buatan manusia ada yang dibuat untuk tujuan sipil dan ada juga yang khusus untuk tujuan militer. Dalam hal ini sistem peringatan dini untuk tsunami termasuk untuk tujuan sipil. Begitu pula dengan alat pendeteksi asap, alat pendeteksi gempa, dan lain sebagainya. Sementara alat peringatan dini untuk militer antara lain adalah alat pendeteksi misil balistik, pendeteksi serangan nuklir, alat peringatan antirudal pesawat tempur, dan lain sebagainya.

Sistem peringatan dini untuk tsunami biasanya disingkat TWS alias Tsunami Warning System. Sesuai dengan namanya, TWS dibangun untuk mendeteksi gejala-gejala alam yang berpotensi untuk mendatangkan bencana tsunami sekaligus mencari lokasi pusat gempa yang menyebabkan tsunami tersebut. Laporan yang diberikan oleh TWS ini bisa digunakan untuk memprediksi besar kerusakan yang akan ditimbulkan dan daerah-daerah yang akan terkena dampak tsunami. Sistem ini terbagi menjadi dua komponen penting, yaitu jaringan sensor-sensor pendeteksi tsunami dan infrastruktur komunikasi yang berguna untuk menyampaikan peringatan dini. Peringatan dini tsunami menghendaki kewaspadaan dan evakuasi sebelum tsunami datang. Laju informasi peringatan dini sangatlah penting mengingat selang waktu antara gempa bumi sampai tsunami mencapai daratan cukup singkat.

Terdapat dua jenis peringatan dini tsunami: peringatan dini internasional dan peringatan dini regional. Keduanya bergantung pada kenyataan bahwa tsunami bergerak dengan laju 500 – 1000 km/jam (sekitar 0,14-0,28 km/detik) di laut lepas, sementara gempa bumi dapat terdeteksi dengan cepat melalui gelombang seismik yang bergerak dengan laju rata-rata 14.400 km/jam atau sekitar 4 km/detik. Dengan memperhatikan gelombang seismik yang muncul, dimungkinkan adanya tenggang waktu untuk prakiraan tsunami sekaligus penyampaian peringatan ke daerah yang terancam tsunami. Hanya saja, karena belum ada model yang jelas yang dapat menghubungkan gempa bumi dan tsunami, peringatan oleh gelombang seismik menjadi kurang dapat diandalkan. Metode yang lebih pasti adalah dengan menggunakan alat pengamat dasar laut untuk melihat gelombang tsunami di laut lepas dengan jarak sejauh mungkin dari garis pantai.

Metode Penyampaian Peringatan :
Proses pendeteksian dan prakiraan bencana tsunami hanyalah setengah dari proses TWS secara keseluruhan. Hal lain yang tidak kalah penting dalam TWS adalah penyampaian peringatan kepada penduduk yang daerahnya terancam tsunami. Hal ini dapat dilakukan melalui beragam jalur telekomunikasi (seperti e-mail, fax, radio, telex, TV, dan lain sebagainya). Dengan demikian pesan darurat dapat diterima oleh masyarakat, pemerintah, serta badan-badan penanggulangan bencana.

SMS Gempa BMG:
Magnitude 6,6 SR, 29 Nov 06, 08:32:22 WIB, Lokasi 2,42LU,128,10 BT [347 km Timur Laut Labuha, Maluku Utara], Kedalaman 13 km. Berpotensi TSUNAMI [untuk diteruskan ke masyarakat]

Kelemahannya:
Tak ada sistem yang dapat melindungi manusia dari bencana tsunami yang terjadi tiba-tiba. Oleh karena itu, sampai saat ini peringatan dini tsunami belum pernah menyelamatkan seorang pun dari bencana tsunami mendadak. Walaupun demikian, peringatan dini tsunami masih dapat bekerja efektif jika jarak pusat gempa sangat jauh. Hal ini dapat memberikan kesempatan bagi para penduduk untuk melakukan evakuasi. Sistem Peringatan Dini merupakan mata rantai yang spesifik (hubungan yang kritis) antara tindakan-tindakan dalam kesiapsiagaan dengan kegiatan tanggap darurat. Ada 2 (dua) faktor yang berperan dalam kerangka Sistem Peringatan Dini yaitu pihak Pengambil Keputusan dan Masyarakat.

Di pihak masyarakat ada tiga unsur yang menentukan bagaimana masyarakat bereaksi terhadap sistem peringatan dini. Unsur-unsur tersebut terdiri dari pengetahuan, sikap, dan perilaku. Selain faktor masyarakat, faktor lain yang berperan dalam kerangka kerja Sistem Peringatan Dini adalah pihak Pengambil Keputusan. Di Indonesia melalui Kepres Nomor 111/2001 kita mengetahui bahwa penanggulangan bencana dan penanganan pengungsi dikoordinasikan oleh Bakornas PBP di tingkat Nasional, Satkorlak PBP di tingkat Provinsi dan Satlak PBP di tingkat Kabupaten/Kota. Melalui keberadaan institusi ini dapat dibuat kebijakan-kebijakan yang berhubungan dengan sistem peringatan dini terutama hal-hal yang berkaitan dengan kerangka kerja sistem peringatan dini, misalnya Protap, Juklak, dan Mekanisme Kerja.

Tahun 2050 Reaktor Fusi Akan di Operasikan?

Naiknya harga minyak mentah boleh jadi membawa berkah besar bagi negara-negara pengekspor minyak seperti OPEC. Namun di lain pihak, terutama negara-negara industri maju, kenaikan harga minyak dapat membawa bencana besar bagi perekonomian mereka. Sumber bahan bakar alternatif yang andal selain bahan bakar fosil ini memang merupakan impian bagi mereka.
Tidak dapat dimungkiri bahwa bahan bakar minyak (BBM) merupakan sumber energi terbesar yang dimanfaatkan manusia, terutama untuk masalah transportasi. Namun tidak dapat dimungkiri pula bahwa BBM akan segera habis jika pola kenaikan pemakaian BBM seperti saat ini tidak dapat diubah. Di sisi lain, dengan gaya hidup manusia sekarang, pembakaran BBM telah meningkatkan kadar CO2 di atas permukaan Bumi yang memicu efek rumah kaca berupa kenaikan temperatur dan cenderung untuk mendestabilisasi pola cuaca. Sumber energi batu bara yang menjadi andalan banyak negara (karena cadangan cukup berlimpah) memiliki dampak lingkungan yang jauh lebih besar.
Sementara itu, teknologi energi terbarukan yang ramah lingkungan seperti energi surya, air, angin, pasang surut, biomassa, dan geotermal sudah secara masif dikembangkan. Namun kelemahan energi jenis ini adalah pada masalah efisiensi serta cadangan sumber yang bervariasi di atas permukaan Bumi. Beberapa di antaranya seperti energi surya, air dan angin, sangat dipengaruhi oleh pola cuaca setempat. Dengan teknologi yang ada saat ini, energi-energi tersebut dapat memenuhi kebutuhan negara-negara dengan populasi yang tersebar namun sulit untuk menyediakan energi bagi populasi padat terkonsentrasi dengan kebutuhan energi per jiwa cukup tinggi seperti di negara-negara industri.
Energi nuklir fisi (nuklir konvensional yang ada sekarang) dapat dianggap sebagai solusi intermediate karena cadangan bahan bakarnya cukup berlimpah. Namun, isu radiasi serta limbah nuklir yang menjadi sangat sensitif di masyarakat (serta sering dipolitisir) telah secara signifikan menekan perkembangan teknologi jenis ini. Apalagi jika dikaitkan dengan isu terorisme, tampaknya masa depan energi nuklir fisi sulit diramalkan menjadi baik.
Reaksi fusi
Reaksi fusi merupakan reaksi yang membuat Matahari serta bintang-bintang di jagat raya ini bercahaya. Reaksi jenis ini hanya dapat berlangsung jika temperatur, tekanan, dan kerapatan bahan bakar ekstrem tinggi. Di dalam inti Matahari, misalnya, temperatur 15-20 juta derajat Celsius, tekanan gravitasi sekitar seperempat triliun atmosfer, serta kerapatan yang mencapai delapan kali kerapatan emas, telah menjamin berlangsungnya fusi inti-inti hidrogen menjadi inti helium secara kontinu selama miliaran tahun. Temperatur dan tekanan ekstrem tersebut diperlukan dalam reaksi fusi untuk mengatasi gaya tolak-menolak Coulomb akibat muatan proton yang menjadi luar biasa besar untuk jangkauan reaksi nuklir. Pada bintang-bintang yang lebih besar, temperatur, tekanan, dan kerapatan mereka dapat lebih besar dari angka-angka di atas.
Tentu saja kondisi tersebut sulit dicapai di atas permukaan Bumi sehingga proses lain harus dicari. Nukleus-nukleus ringan yang memiliki energi ikat rendah cenderung untuk berfusi menjadi nukleus yang lebih berat karena energi ikatnya lebih tinggi. Tingginya energi ikat menggambarkan kestabilan nukleus. Sebaliknya, dengan alasan yang sama, nukleus berat (misalnya 239 Pu) cenderung untuk berfisi (pecah) menjadi nukleus-nukleus yang lebih ringan.
Salah satu reaksi fusi yang saat ini serius dipertimbangkan adalah penggabungan nukleus deuterium (D) dan tritium (T). Reaksi DT ini memiliki peluang lebih besar dibandingkan dengan reaksi DD atau Da (a adalah nukleus helium). Selain itu, cadangan bahan bakar (D dan T) sangat berlimpah. Deuterium dapat diekstraksi dari air melalui metode elektrolisis. Setiap satu meter kubik air mengandung 30 gram deuterium, sehingga jika seluruh listrik di muka Bumi ini dibangkitkan oleh reaktor fusi, maka cadangan deuterium akan mencukupi kebutuhan lebih dari sejuta tahun. Tritium tidak tersedia secara alami, melainkan harus diproduksi (dibiakkan) dalam reaktor dengan litium. Litium adalah metal yang paling ringan yang cukup banyak ditemukan pada kulit Bumi serta dalam konsentrasi rendah di lautan. Cadangan litium yang telah diketahui hingga saat ini dapat mencukupi kebutuhan selama lebih dari 1.000 tahun.
Litium akan dibuat menjadi selimut (blanket) reaktor seperti diperlihatkan pada Gambar. Reaksi fusi DT akan menghasilkan a dan neutron n. Neutron ini akan bergerak keluar plasma (atom-atom helium dan tritium yang telah kehilangan elektron akibat temperatur sangat tinggi) dan diserap oleh selimut litium yang selanjutnya menghasilkan T dan a. Kedua jenis reaksi tersebut berlangsung bergantian menghasilkan energi yang dapat diserap oleh dinding reaktor.
D + T --> a + n + energi
n + Li --> a + T + energi
Keuntungan lain reaktor fusi adalah rendahnya problem sampah nuklir. Dari semua bahan bakar fusi hanya tritium yang radioaktif dengan waktu paruh (half life) 12,5 tahun. Sampah radioaktif yang serius di sini hanyalah material dinding reaktor yang menjadi radioaktif karena dihujani oleh partikel neutron. Namun radioaktivitas yang ditimbulkan akan "cepat sekali" dalam kasus terburuk kurang dari 100 tahun. Bandingkan dengan sampah reaktor fisi konvensional yang tetap radioaktif setelah jutaan tahun. Dengan demikian, mayoritas sampah fusi dapat dikubur tidak terlalu dalam dan relatif dengan cepat dilupakan.
Selain itu, reaksi fusi secara inheren sangat aman. Kegagalan dalam bentuk apa pun akan cepat mengontaminasi plasma dalam reaktor yang berakibat padamnya reaksi fusi. Tidak ada reaksi berantai di sini yang dapat tumbuh secara eksponensial akibat kegagalan pengendalian titik kritis seperti pada reaktor fisi.
Dari penjelasan tersebut tampak bahwa reaktor fusi merupakan pembangkit energi (listrik ataupun termal) impian. Tidak ada emisi CO atau CO2 dan dampak lingkungannya jauh di dalam batas toleransi. Meski demikian masih banyak problem yang harus dipecahkan ilmuwan sebelum reaktor fusi dapat beroperasi secara komersial.

PLC (Programmable Logic Controller)

PLC (Programmable Logic Controller) diperkenalkan pertama kali pada tahun 1969 oleh Richard E. Morley yang merupakan pendiri Modicon Corporation. Menurut National Electrical Manufacturing Assosiation (NEMA) PLC didefinisikan sebagasi suatu perangkat elektronik digital dengan memori yang dapat diprogram untuk menyimpan instruksi-instruksi yang menjalankan fungsi-fungsi spesifik seperti: logika, sekuen, timing, counting, dan aritmatika untuk mengontrol suatu mesin industri atau proses industri sesuai dengan yang diinginkan. PLC mampu mengerjakan suatu proses terus menerus sesuai variabel masukan dan memberikan keputusan sesuai keinginan pemrograman sehingga nilai keluaran tetap terkontrol.
PLC merupakan “komputer khusus” untuk aplikasi dalam industri, untuk memonitor proses, dan untuk menggantikan hard wiring control dan memiliki bahasa pemrograman sendiri. Akan tetapi PLC tidak sama akan personal computer karena PLC dirancang untuk instalasi dan perawatan oleh teknisi dan ahli listrik di industri yang tidak harus mempunyai skill elektronika yang tinggi dan memberikan fleksibilitas kontrol berdasarkan eksekusi instruksi logika. Karena itulah PLC semakin hari semakin berkembang baik dari segi jumlah input dan output, jumlah memory yang tersedia, kecepatan, komunikasi antar PLC dan cara atau teknik pemrograman. Hampir segala macam proses produksi di bidang industri dapat diotomasi dengan menggunakan PLC. Kecepatan dan akurasi dari operasi bisa meningkat jauh lebih baik menggunakan sistem kontrol ini. Keunggulan dari PLC adalah kemampuannya untuk mengubah dan meniru proses operasi di saat yang bersamaan dengan komunikasi dan pengumpulan informasi-informasi vital.

Operasi pada PLC terdiri dari empat bagian penting:
1. pengamatan nilai input
2. menjalankan program
3. memberikan nilai output
4. pengendalian
Dari kelebihan diatas PLC juga memiliki kekurangan antara lain yang sering disoroti adalah bahwa untuk memrogram suatu PLC dibutuhkan seseorang yang ahli dan sangat mengerti dengan apa yang dibutuhkan pabrik dan mengerti tentang keamanan atau safety yang harus dipenuhi. Sementara itu orang yang terlatih seperti itu cukup jarang dan pada pemrogramannya harus dilakukan langsung ke tempat dimana server yang terhubung ke PLC berada, sementara itu tidak jarang letak main computer itu di tempat-tempat yang berbahaya. Oleh karena itu diperlukan suatu perangkat yang mampu mengamati, meng-edit serta menjalankan program dari jarak jauh.

Akusisi data suhu menggunakan Mikrokontroler

Abstrak
Makalah ini membahas perancangan sistem akuisisi data suhu yang menggunakan komponen-konponen dasar berupa sebuah sensor suhu, mikrokontroller dan LCD sebagai fasilitas penampil. Sistem akuisisi data suhu menjadi satu hal yang sangat penting dalam kegiatan perindustrian, karena merupakan sebagian kecil dari sebuah proses kontrol. Berkenaan dengan pentingnya sistem, maka dilakukan perancangan sistem akusisi data suhu yang mampu melakukan kegiatan monitoring suhu suatu plant. Data yang akan diukur merupakan sebuah besaran fisis temperature sehingga untuk dapat diolah dan ditampilkan dalam bentuk sistem elektris digunakan sensor suhu LM35 yang mampu mengkonversi besaran tersebut dengan kenaikan 10mV/ºC. Untuk dapat merancang sistem maka pertama kali dilakukan proses mengubah suhu menjadi tegangan analog menggunakan sensor suhu LM35. Setelah melalui proses pengkondisian sinyal dengan cara dikuatkan, tegangan analog diubah menjadi data digital menggunakan ADC 0804. Data digital yang diperoleh kemudian diolah oleh Mikrokontroller AT89S51 dan ditampilkan, sehingga didapatkan suatu informasi mengenai suhu plant dengan satuan ºC pada sebuah LCD. Dari perancangan sistem akuisisi data suhu didapatkan hasil bahwa sistem ini memiliki kemampuan untuk mengukur suhu dari 25ºC sampai 100ºC dengan error rata-rata penunjukan suhu sebesar 0,2125°C.

Kata kunci : Akuisisi data suhu, Sensor suhu LM35, Mikrokontroller AT89S51

I. PENDAHULUAN

1.1 Latar Belakang
Sistem Instrumentasi yang berbentuk akuisisi data telah dipergunakan secara luas dalam kegiatan perindustrian, karena merupakan bagian dari proses kontrol. Pengukuran besaran fisis adalah salah satu langkah dalam akuisisi data. Temperatur merupakan salah satu besaran fisis yang sering dipakai dalam suatu sistem kontrol baik hanya untuk sistem monitoring saja atau untuk proses pengendalian lebih lanjut.

Dalam kaitannya dengan hal tersebut, maka kami membuat sebuah alat pendeteksi suhu yang dapat di kontrol oleh sebuah mikrokontroller. Dengan menampilkan suatu hasil pengukuran secara digital, pemantauan terhadap proses dapat dilakukan dengan lebih mudah.

1.2.1 Tujuan
Merancang sistem akuisisi data suhu untuk kemudian ditampilkan di LCD dengan menggunakan Mikrokontroller AT89S51.


1.3 Batasan Masalah
Dalam pembuatan tugas ini penulis membatasi permasalahan sebagai berikut :
1. Range akuisisi data adalah 25 ºC sampai dengan 100 ºC.
2. Data pengukuran ditampilkan pada sebuah LCD sebagai peralatan monitoring tanpa melakukan proses pengendalian.
3. Konfigurasi ADC diatur secara free running.

II. DASAR TEORI

2.1.1 Sensor Suhu LM 35
Untuk mendeteksi suhu digunakan sebuah sensor suhu LM 35 yang dapat dikalibrasikan langsung dalam °C, LM 35 ini difungsikan sebagai basic temperature sensor. Vout dari LM 35 ini dihubungkan dengan ADC (Analog To Digital Converter). Dalam suhu kamar (25°C) tranduser ini mampu mengeluarkan tegangan 250mV dan 1,5V pada suhu 150°C dengan kenaikan sebesar 10mV/°C.

2.2 Penguat Operasional (Operasional Amplifier)
Penguat operasional adalah rangkaian terpadu (IC) yang mempunyai 5 buah terminal dasar. Dua terminal untuk catu daya, 2 yang lain digunakan untuk isyarat masukan yang berupa masukan membalik (-) dan masukan tak membalik (+) serta 1 terminal untuk keluaran.

2.2.1 Penguat Tak Membalik (Non-inverting Amplifier)
Penguat tak membalik merupakan suatu penguat dimana tegangan keluarannya atau Vo mempunyai polaritas yang sama dengan tegangan masukan atau Vi. Arus i mengalir ke Ri karena impedansi masukan op – amp sangat besar sehingga tidak ada arus yang mengalir pada kedua terminal masukannya. Tegangan pada Ri sama dengan Vi karena perbedaan tegangan pada kedua terminal masukannya mendekati 0 V.
i = (2.5)
Tegangan pada Rf dapat dinyatakan sebagai
VRf = I Rf = (2.6)
Tegangan keluaran Vo didapat dengan menambahkan tegangan pada Ri yaitu Vi dengan tegangan pada Rf yaitu VRf.
Vo = Vi + Vi (2.7)

2.2.2 Penguat Differensial
Penguat differensial merupakan suatu penguat dimana tegangan keluarannya atau Vo merupakan hasil selisih antara kedua buah tegangan masukan pada terminal inverting dan non-invertingnya.

2.3 Rangkaian Analog to Digital Converter (ADC)
ADC pada rancangan ini digunakan untuk mengubah masukan analog keluaran sensor suhu yang sudah dikuatkan menjadi data digital 8 bit. Tipe ADC yang digunakan adalah ADC 0804 pada mode kerja free running. Untuk membuat mode kerja ADC 0804 menjadi free running, maka harus diketahui bagaimana urutan pemberian nilai pada dan perubahan nilai pada.

Mode kerja free running ADC diperoleh jika dan dihubungkan ke ground agar selalu mendapat logika 0 sehingga ADC akan selalu aktif dan siap memberikan data. Pin dan dijadikan satu karena perubahan logika sama dengan perubahan logika pada , sehingga pemberian logika pada dilakukan secara otomatis oleh keluaran .

2.4 Mikrokontroller AT89S51
AT89S51 adalah sebuah mikrokontroller 8 bit terbuat dari CMOS, yang berkonsumsi daya rendah dan mempunyai kemampuan tinggi. Mikrokontroller ini memiliki 4Kbyte In-System Flash Programmable Memory, RAM sebesar 128 byte, 32 input/output, watchdog timer, dua buah register data pointer, dua buah 16 bit timer dan counter, lima buah vektor interupsi, sebuah port serial full-duplex, osilator on-chip, dan rangkaian clock.

AT89S51 dibuat dengan teknologi memori non-volatile dengan kepadatan tinggi oleh ATMEL. Mikrokontroller ini cocok dengan instruksi set dan pinout 80C51 standart industri.
Flash on-chip memungkinkan memori program untuk diprogram ulang dengan programmer memory nonvolatile yang biasa.

Keterangan :
Vcc : Suplai Tegangan
GND : Ground atau pentanahan
RST : Masukan reset. Kondisi logika ‘1’ selama siklus mesin saat osilator bekerja dan akan mereset mikrokontroler yang bersangkutan.
Fungsi - fungsi Port :
Port 0 : Merupakan port paralel 8 bit open drain dua arah. Bila digunakan untuk mengakses memori luar, port ini akan memultipleks alamat memori dengan data.
Port 1 : merupakan port paralel 8 bit dua arah yang dapat digunakan untuk berbagai keperluan.
Port 2 : merupakan port paralel selebar 8 bit dua arah. Port ini melakukan pengiriman byte alamat bila dilakukan pengaksesan memori eksternal.
P3.0 : Saluran masukan serial
P3.1 : Saluaran keluaran serial
P3.2 : Interupsi eksternal 0
P3.3 : Interupsi eksternal 1
P3.4 : Masukan eksternal pewaktu / pencacah 0
P3.5 : Masukan eksternal pewaktu / pencacah 1
P3.6 : Sinyal tanda baca memori data ekstrenal.
P3.7 : Sinyal tanda tulis memori data eksternal.

III. PERANCANGAN SISTEM

3.1 Perancangan Perangkat Keras

3.1.1 Sensor Suhu ( LM35 )
Sensor suhu LM35 berfungsi untuk mengubah besaran fisis yang berupa suhu menjadi besaran elektris tegangan. Sensor ini memiliki parameter bahwa setiap kenaikan 1ºC tegangan keluarannya naik sebesar 10mV dengan batas maksimal keluaran sensor adalah 1,5 V pada suhu 150°C.

Pada perancangan kita tentukan keluaran adc mencapai full scale pada saat suhu 100°C, sehingga saat suhu 100°C tegangan keluaran transduser (10mV/°C x 100°C) = 1V.
Dari pengukuran secara langsung saat suhu ruang, keluaran LM35 adalah 0.3V (300mV ). Tegangan ini diolah dengan menggunakan rangkaian pengkondisi sinyal agar sesuai dengan tahapan masukan ADC.

3.1.2 Pengkondisi Sinyal
Pengkondisi sinyal berfungsi untuk menguatkan tegangan keluaran sensor suhu LM35 agar mampu diproses pada peralatan selanjutnya dalam hal ini oleh ADC 0804.
Diinginkan bahwa pengukuran suhu dapat dilakukan pada range 25°C – 100°C, sedangkan saat suhu kamar LM35 sudah mengeluarkan tegangan sebesar 0,3V, sehingga untuk dapat mengatur agar masukan ADC sebesar 0V pada suhu ruang, ditambahkan sebuah penguat differensial.

Keluaran penguat differensial dikuatkan lagi dengan rangkaian penguat non inverting. Dengan Vin = 1V pada 100°C dan Vout yang diinginkan sebesar 5V (Vx) maka dapat dihitung nilai tahanan untuk penguat non-inverting sebagai berikut :

Jika Ri = 1K maka, Rf = 4K dalam aplikasi digunakan potensiometer 50K untuk Rf.

3.1.3 Analog to Digital Converter ( ADC 0804 )
Perancangan untuk rangkaian adc digunakan mode free running. Mode ini dipilih karena waktu konversi adc jauh lebih cepat terhadap tingkat perubahan suhu dari plant, sehingga setiap kali suhu berubah, adc selalu telah selesai melakukan konversi data sehingga data sudah valid untuk dicuplik.

Untuk ADC 0804 dengan jumlah bit sebesar 8 bit dan Vref = 5V maka resolusinya (∆V) = 5 x 2-8 = 19,53mV.
Masukan tegangan analog adc yang berasal dari keluaran pengkondisi sinyal saat full scale dengan nilai sebesar Vx dapat dihitung sebagai berikut:
dengan demikian saat tegangan masukan adc 4,9804 keluaran adc akan bernilai FFH.


3.1.4 Mikrokontroller ( AT89S51 )
Data digital 8 bit dari ADC diambil oleh mikokontroller melalui Port 2 ( P2.0-P2.7 dihubung dengan DB0-DB7 ). Sedangkan data masukan untuk penampil LCD dikeluarkan melalui Port 1 ( P1.0-P1.7 dihubung dengan D0-D7 ). Untuk mengontrol kaki RS dan E pada LCD mikrokontroller memanfaatkan kaki P3.6 dan P3.7
Proses pengambilan data dan pengolahan data dapat dilihat dalam gambar 7. Data yang diambil dari P2 dikalibrasi terlebih dahulu, setelah dikalibrasi data tersebut kemudian diubah ke dalam kode ASCII supaya tertampil angka 0-100 pada LCD, jika tidak diubah maka yang tertampil adalah angka 0-255.

IV. PENGUJIAN DAN ANALISA

4.1 Pengujian setiap blok
4.1.1 Pengujian LM35
Sensor suhu LM35 diuji dengan cara memberikan catu 5V dan memberikan pemanasan secara tidak langsung, sedangkan tegangan keluaran langsung diamati dengan voltmeter. Dari pengujian didapatkan data sebagai berikut.

Tabel 2. Hasil pengujian sensor LM35

Suhu Tegangan keluaran
35°C 0.35
40°C 0.40
45°C 0.45
50°C 0.51
55°C 0.55
60°C 0.65
65°C 0.71
70°C 0.76

Dari hasil pengujian diketahui tegangan keluaran sensor naik sebesar 50mV untuk setiap 5°C atau 10mV/°C, maka sensor telah bekerja dengan baik.

4.1.2 Pengujian rangkaian pengkondisi sinyal
Pengujian rangkaian pengkondisi sinyal dilakukan dengan cara memberikan tegangan berubah-ubah pada bagian masukan penguat akhir ( penguat non inverting ) kemudian mengukur keluarannya untuk kemudian dihitung tingkat penguatan tegangan.

Tabel 3. Hasil pengujian pengkondisi sinyal

Vin Vout Av = ( Vout/Vin )
0,1V 0,5V 5
0,2V 1V 5
0,3V 1,5V 5
0,4V 2V 5
0,5V 2,5V 5
0,6V 3V 5
0,7V 2,5V 5

Dari data tabel diketahui bahwa tingkat penguatan tegangan rangkaian pengkondisi sinyal adalah 5 kali, maka rangkaian telah dapat bekerja dengan baik.

4.1.3 Pengujian ADC 0804
Pengujian dilakukan dengan cara memberi tegangan masukan pada ADC dan mencatat data digital keluaran yang dihasilkan melalui tampilan led 8 bit.

Tabel 4. Hasil pengujian ADC.

Tegangan masukan Data digital
0,6 v 23 H
1,2 v 41 H
1,8 v 62 H
2,6 v 8D H
3,4 v B7 H
4 v DF H
4,2 v EF H
4,9 v FF H

Data hasil pengujian ADC menunjukkan bahwa komponen ini dapat bekerja dengan baik.


4.1.4 Pengujian Software
Pengujian software meliputi pengujian program akuisi data suhu dan kalibrasi data akuisisi terhadap tampilan suhu pada LCD. Proses pengujiannya dilakukan dengan melihat secara visual data digital yang tertampil pada led indikator yang merupakan data yang diakuisisi dan membanding hasil tampilan suhu di LCD.

Tabel 5. Hasil pengujian tampilan suhu

Data Digital Suhu tertampil Suhu terhitung
25 H 35°C 35,294°C
43 H 44°C 44,117°C
63 H 53°C 53,823°C
8D H 66°C 66,470°C
B7 H 78°C 78,823°C
DF H 90°C 90,588°C
EF H 95°C 95,294°C
FF H 100°C 100°C

Dari tabel diketahui bahwa antara suhu tertampil di LCD dengan suhu hasil perhitungan terdapat perbedaan dalam hal ketelitian, dimana suhu tertampil di LCD adalah nilai bulat tanpa menampilkan nilai dibelakang koma, sedangkan suhu terhitung adalah sebagai patokan suhu yang harus tertampil. Penghilangan nilai koma ini bertujuan untuk memudahkan proses pembuatan program, namun dengan konsekuensi adanya tingkat error suhu tertampil akibat penghilangan tersebut. Software telah dapat mengkalibrasi data digital dan menampilkan nilai suhu dari suatu plant, maka software telah dapat bekerja dengan baik.

4.2 Pengujian sistem keseluruhan
Pengujian sistem keseluruhan dilakukan dengan menempatkan sensor LM35 dan termometer dalam plant suhu yang sama kemudian membandingkan antara suhu penunjukan yang tertampil pada LCD terhadap penunjukan suhu pada termometer selama 30 menit.

Tabel 6. Hasil pengujian sistem

Tampilan suhu
LCD Tampilan suhu termometer Error
30°C 29,7°C 0,3°C
32°C 32°C 0°C
34°C 34°C 0°C
37°C 37,5°C 0,5°C
40°C 40°C 0°C
45°C 45,6°C 0,6°C
46°C 46°C 0°C
47°C 46,7°C 0,3°C
 error 1,7°C

Hasil percobaan menunjukkan bahwa sistem akuisisi data suhu memiliki error rata-rata sebesar 0,2125°C, nilai ini didapat dengan menjumlahkan semua nilai error dari setiap pengujian dibagi jumlah pengujian ( 8 kali ).

V. PENUTUP

5.1.1 Kesimpulan
Dari hasil perancangan dan pembuatan perangkat sistem akuisisi suhu dapat disimpulkan hal – hal sebagai berikut :
1. Hasil pengujian ADC menunjukkan bahwa untuk masukan sebesar 4,9V data digital sudah mencapai FFh, maka akan mengakibatkan terjadinya kesalahan penunjukkan suhu dimana saat tegangan masukan 4,9V suhu tertampil sudah mencapai 100°C.
2. Error rata-rata penunjukan suhu pada sistem akuisisi data suhu adalah 0,2125°C.
3. LM35 memiliki tegangan keluaran sensor dengan kenaikan sebesar 50 mV untuk setiap 5°C atau 10 mV/°C, maka sensor memiliki kenaikan yang cukup linier.

5.2 Saran
1. Pada bagian keluaran akhir rangkaian pengkondisi sinyal sebaiknya ditambahkan rangkaian clipper yang berfungsi untuk membatasi masukan ADC agar maksimal sebesar 5V.
2. Untuk mempermudah pengaturan nol dari rangkaian penguat differensial sebaiknya keluaran LM35 diperkuat terlebih dahulu sehingga tegangan referensi pengurang tidak terlalu kecil.
3. Sumber tegangan referensi pengurang sebaiknya menggunakan diode zener agar didapatkan tegangan yang stabil.
4. Untuk membuat tampilan data suhu lebih presisi maka dapat dibuat program kalibrasi data suhu yang lebih baik.

Sistem Organisasi Komputer Rangkaian Data Selektor (Enable)

Kita sering tertegun melihat kinerja sebuah jam digital di tangan kita yang mampu mencacah detik demi detik, atau odometer digital kendaraan kita yang mencacah kilometer demi kilometer atau timbangan digital yang maencacah gram demi gram, mesin otomatis pengisi bahan bakar mencacah liter demi liter bensin dan lain-lain. Mengapa piranti digital tersebut dapat mencacah? Mengapa piranti tersebut dapat meniru kita dalam mencacah sesuatu, 2 lliter bensin misalnya? Berikut ini kita akan membahas piranti digital yang mempunyai kemampuan mencacah yaitu piranti pencacah atau Counter.

Telah kita pelajari berbagai piranti digital dengan berbagai sifat, kegunaan dan prinsip kerja, yang meliputi : membentuk sistem analog menjadi digital, memutuskan bentuk operasi logika, menyimpan, dan menggeser. Piranti–piranti tersebut mempunyai satu kekurangan yaitu tidak dapat mencacah. Tetapi penggabungan dari berbagai macam piranti digital seperti : gerbang logika, Flip–flop, dan register dapat diciptakan sebuah piranti pencacah, yakni suatu piranti dengan kemampuan baru ; kemampuan mencacah, disamping kemampuannya sebagai pembentuk logika, menyimpan dan menggeser data. Jadi piranti pencacah terdiri dari : gerbang logika, Flip – flop dan register yang dibangun dengan suatu arsitektur umpan balik, sehingga mempunyai kemampuan baru, yaitu dapat mencacah. Pencacah atau counter merupakan rangkaian logika sekuensi yang berfungsi mencacah atau menghitung jumlah pulsa clock yang masuk. Menurut jumlah pulsa yang dapat dicacah, terdapat jenis pencacah modulo 2n, contohnya pencacah modulo 4, modulo 8 dan modulo 16.

Sedangkan menurut pengaktifan elemen penyimpanannya dan dalam hal ini elemen penyimpan penacah adalah flip-flop, terdapat pencacah jenis tak serempak atau pencacah tak singkron (asynchronous counter) dan pencacah serempak atau pencacah singkron (synchronous counter). Pada pencacah tak serempak, elemen-elemen penyusunnya yakni flip-flip bekerja secara tidak serempak ketika pencacah tersebut diberi input pulsa, dan pada pencacah serempak elemen-elemen penyusunnya bekerja secara bersama-sama ketika ada pulsa masuk ke inputnya. Prosedur perancangan kedua jenis pencacah tersebut agak berbeda. Untuk pencacah serempak prosedur perancangannya sama dengan prosedur perancangan rangkaian sekuensial. Sedangkan rangkaian pencacah tak serempak prosedur perancangannya lebih sederhana.

Sejarah Perkembangan Komputer

Komputer yang kita gunakan sekarang ini tidak serta merta muncul begitu saja melainkan melalui proses yang panjang dalam evolusinya. Hal ihwal munculnya komputer mungkin dapat dilihat dalam kilas balik sejarah sejak digunakannya  Abacus – ditemukan di Babilonia (Irak) sekitar 5000 tahun yang lalu – sebagai alat perhitungan manual yang pertama, baik di lingkup sekolah maupun kalangan pedagang, saat itu. Pada periode selanjutnya telah banyak ditemukan alat-alat hitung mekanikal sejenis yaitu Pascaline yang ditemukan oleh Blaine Pascal pada tahun 1642, Arithometer oleh Charles Xavier Thomas de Colmar pada tahun 1820, Babbage’s Folly oleh Charles Babbage pada tahun 1822, dan Hollerith oleh Herman Hollerith pada tahun 1889. Kesemuanya masih berbentuk mesin sepenuhnya tanpa tenaga listrik. Ukuran dan kerumitan strukturnya berdasarkan atas tingkat pengoperasian perhitungan yang dilakukan. Barulah pada tahun 1940, era baru komputer elektrik dimulai sejak ditemukannya komputer elektrik yang menerapkan sistem aljabar Boolean.

Perkembangan teknologi komputer yang dijabarkan di bawah ini di bagi atas empat generasi berdasarkan atas komponen-komponen yang digunakannya, mulai dari yang berukuran “big” hingga mikro yang sejalan juga dengan kerumitan komponennya.


Generasi Pertama

Saat ini merupakan jamannya komputer-komputer raksasa, seperti Z3, Colossus, ENIAC, EDVAC, EDSAC, UNIVAC I. Karakteristik komputer pada zaman ini ditandai dengan ukurannya yang hampir sebesar kamar tidur, mengunakan tube vakum dengan jumlah yang amat banyak untuk menyimpan dan memproses perintah atau instruksi, memakan tenaga listrik ribuan watt, menggunakan bahasa mesin dan hanya dapat digunakan oleh orang yang terlatih. Jadi, orang awam tidak akan dapat menggunakannya sehingga komputer jenis ini belum dikomersialisasikan ke khalayak ramai. Hanya perusahaan-perusahaan besar, institusi pendidikan dan instansi pemerintah yang menggunakannya.


Generasi Kedua

Jaman ini dimulai dengan pemakaian transistor dan dioda sebagai pengganti dari tube vakum sehingga sizenya lebih kecil dibandingkan generasi pendahulunya. Penemuan lainnya yaitu penggunaan memori inti magnetik yang berfungsi menyimpan data, sehingga lebih cepat dalam pemrosesan data, serta bahasa mesin telah digantikan dengan bahasa assembly (Fortran dan Cobol) yang memudahkan dalam pengoperasiannya. Beberapa contoh komputer pada masa ini, yaitu Stretch, LARC, DEC PDP-8, IBM 1401, IBM 7090 dan IBM 7094.


Generasi Ketiga

Era baru komunikasi komputer mulai menapakkan kakinya pada momentum ini. Sebagian besar perusahaan-perusahaan besar menerapkan sistem on-line dengan menggunakan terminal jarak jauh dalam pemakaian komputer (baca : on-line). Teknologi ini tentunya didukung pula oleh kinerja komputer yang semakin baik dari segi penggunaan hardware maupun software. Penemuan baru di bidang hardware dilakoni dengan munculnya IC (Integrated Circuit) dalam komponen komputer. Karena kelebihannya dalam menyatukan berbagai komponen-komponen dalam suatu chip tunggal sehingga komputer pada saat itu ukuran komputer menjadi semakin kecil tanpa menurunkan kinerja yang dihasilkan, bahkan semakin meningkatkan kinerjanya. Pada bagian software, teknik-teknik pemrograman jamak (Multi Programming) mulai dikembangkan sehingga makin menambah koleksi berbagai bahasa pemrograman yang ada. Cray-1, UNIVAC 90/30 dan IBM 360 adalah beberapa contoh komputer pada generasi ini.


Generasi Keempat

Seiring dengan lajunya waktu perkembangan komputer sebagai alat pemrosesan data semakin meningkat pesat terutama pada generasi ini. Kecepatannya yang semakin bertambah berbanding terbalik dengan ukurannya yang semakin kecil dengan didukung oleh kemampuan memori yang lebih besar. Harganya pun semakin murah disebabkan oleh karena komponen-komponennya telah diproduksi dan dijual secara missal. Pada periode ini berbagai IC disatukan menjadi satu kesatuan membentuk komponen yang disebut dengan VLSI (Very Large Scale IC). Penggunaan perangkat lunak yang semakin mudah dan berkembang mulai diterapkan pada komputer-komputer rumahan, seperti word processing dan spreadsheet. Jaringan internet pun makin luas yang dahulunya hanya dinikmati oleh kelompok-kelompok elite kini sudah bisa digunakan juga oleh masyarakat awam. Penggunaan mikroprosessor kini tidak mutlak lagi digunakan hanya pada komputer melainkan sudah diaplikasikan pada produk-produk elektronik lainnya, seperti televisi dan microwave. Melihat perkembangan dunia komputer yang tingkat pertumbuhannya sangat tinggi mulai dari generasi awal hingga sekarang ini dapat kita prediksikan bagaimana karakteristik komputer pada generasi mendatang. Mungkin saja, komputer nantinya tidak harus terus didikte oleh manusia tetapi ia sudah dapat melakukan segala sesuatunya sendiri. Boleh dikata kemampuannya sudah menyerupai kepandaian manusia. Kemampuan seperti itu (Kecerdasan Buatan atau Artificial Intelegence) kini aktif diteliti oleh negara-negara maju seperti Jepang dan Amerika Serikat.

ShareThis